# MOVEO: Moving made easy

#### Designed by Kristen Tapping

Moveo is an innovative wheelchair that was designed specifically for people with spinal cord injuries. However, it can be used by any wheelchair user 8 years of age and older. I chose to create something for this particular disability as the concept was originally designed for the Bolt Burdon Kemp 2018 Design Challenge geared towards people with spinal cord injuries, of which I won 1st place. In addition, a close friend of mine has this disability and I have observed the hidden challenges this group of people face on a daily basis.

My idea initially came from the frustration of observing how unsanitary and non-functional the pushing mechanism is on traditional wheelchairs - the hand must touch the wheel when pushing, leading to contamination of whatever the wheel has picked up from the ground or the floor. In addition, this disability brings along poor dexterity meaning users have a very hard time pushing the rim - Moveo solves this by providing a wider pushing surface made of a rubber-like material that is easy to grip.

Moveo's main attribute is the defered pushing mechanism that runs through a spur gear allowing for a physical separation of the push rim and wheel. In addition to providing a more sanitary and effective pushing mechanism, the gear reduction process reduces the force needed to propel the wheelchair due leveraging of the applied force. Through prototyping, a set of spur gears could be developed to meet the needs of users with varied strength capabilities.

This concept is different from any other product, as this spur gear derived pushing mechanism (where users are still using a push rim) does not exist in the wheelchair market and answers a great need of separating the push rim from the wheel. Prototyping would have to begin with establishing whether this spur gear mechanism works in a wheelchair context, designing a spur gear that reduces force required without making it too fast, and fabricating the frame to be as functional as possible while keeping the design clean and minimal. Using plywood for the seat and armrests, 3D printing for the frame and spur gears, and existing bicycle wheels for the wheels and push rim, I would estimate a proof of principle rig could be constructed for approximately £1000. An improved iteration, which I hope would be a prototype capable of real world testing (carbon fibre frame, PCM packs in the seat, Infinergy E-TPU on the wheels and push rim, plastic/metal 3D printed rims, and formed plywood or carbon fibre for the seat and armrest) could be constructed with the remaining £4000.





# MOVEO: Moving made easy

A functional, comfortable, and aesthetic wheelchair designed especially for people with a spinal cord injury. Moveo makes moving easy through gear reduction, lightweight yet high strength materials, and a pushing mechanism that seperates the push rim from the wheel for a cleaner, more efficient movement. Available in three trims, the wheels, rims and frame feature trending colours through intricate patterns and details.

### Research

In a market abundant with wheelchairs, Moveo attempts to stand out from the rest not only by tailoring features to people with a spinal cord injury but also by countering common issues.

From primary and secondary research, I observed these issues to be: high cost, bulky weight, unaesthetic appearance, slippery rail, contact with dirty tire upon pushing rail, abundance of complex joints, perspiration prone fabric.

I also observed the challenges facing potential users of Moveo to be: inability to grab rail/low push power, necessity of wearing gloves to push rail, inability to regulate body temperature from injured vertebrae down, undetected high blood pressure, uncontrollable shaking legs and feet, poor posture due to inability to employ core strength.

# MOVING MECHANISM

| Pull push rim backwards

Place hand on the rubberlike push rim and pull it backwards. The push rim does not touch the ground/floor allowing user to keep hands clean.

2

# Spur gear is triggered

The push rim moving backwards makes the spur gear move forward staying aligned to the rim's inner grooves.

3

# Wheel is propelled forward

The spur gear drives the wheel in the same forward direction creating movement.



## **Reduced Force Needed**

The gear reduction mechanism reduces the force needed to propel the wheelchair due to leveraging of the applied force. Varied sized spur gears would be available to match the user's strength.



## 360 Movement

The front rubber-like sphere is attached to a mechanism that can move freeley forward and back and allows minimal tilting for easier maneuvering.



## **USER ENHANCING FEATURES**



# Ultra-Grip Push Rim

The push rim has an oval shape providing a flatter structure that perfectly complements the user's hand. The rubber-like surface enhances grip traction making pushing easier and preventing slippage when wet.



## **Temperature Control**

To help alleviate the uncontrolable temperature changes users experience, Moveo's seat is lined with phase change materials which release hot or cold thermal energy depending on the user's state. \*If Moveo were to be prototyped, wax packs would be employed due to their larger energy storage capability.



# TRIMS & COLOURS



Sencha

Nemo

Dulche

# MATERIAL SELECTION

The materials were selected to create a lightweight, resistant, and cost-effective wheelchair that provides smart inherent solutions to the end user. The use of recycled materials not only decreases cost and carbon footprint, it provides a unique look that stands out from the norm. All of these materials can be processed for low to high production, leaving the manufacturing process open to scalability.



#### **Recycled Aluminium**

#### Performance

High strength to weight ratio Easy machining Corrosion resistant Easy to clean

#### Sustainability

Only requires 5% of energy to recycle aluminum vs extract from new sources. Abundantly recyclable without degradation of performance.

Cost

£0.30 - £0.60 / kg

Usage Spur gears, rims Supplier

Alcoa

## **Recycled Carbon Fibre**

#### Performance

Superior strength to weight ratio Can create non-linear 3D shapes Sustainability

Over 30% of CF ends up as waste during production.

#### Cost

30-40% cheaper than virgin carbon fibre

#### Usage

Base frame Supplier ELG Carbon Fibre

## Hostaform POM

#### Performance

Excellent wear resistance High strength and stiffness Can be used for detailed structures Sustainability 100% recyclable Cost In line with engineered plastics Usage Seat, backrest, armrests Supplier Celanese, Dupont

### Schoeller PCM

#### Performance

Stores and releases thermal energy Compatible with a range of textiles Weatherproof & resistant to washi Sustainability Made of recycled carbon fibre scraps Cost TBD - depending on textile quality Usage Seat cusion cover Supplier Schoeller, Outlast

## Infinergy E-TPU

|     | Performance                   |
|-----|-------------------------------|
| gy  | Low bulk weight               |
| S   | Water and chemical resistant  |
| ing | High abrasion resistance      |
|     | Sustainability                |
|     | Made of recycled Adidas soles |
|     | Cost                          |
|     | TBD                           |
| /   | Usage                         |
|     | Wheels, pushrims, inner seat  |
|     | cushion                       |
|     | Supplier                      |
|     | BASF                          |
|     |                               |